Knapsack
背包问题,使用动态规划求解。
分类
有 num 个物品和容量为 weight 的背包,每个物品都有自己的体积 w 和价值 v,求拿哪些物品可以使得背包所装下物品的总价值最大。如果限定每种物品只能选择 0 或 1 个,则为 0-1 背包问题;如果不限定每种物品的数量,则为无界背包问题或完全背包问题。
状态矩阵使用二维数组,dp[i][j]
表示前 i 件物品体积不超过 j 的情况下能达到的最大价值。
0-1 背包
每件物品只能选择拿或不拿。状态转移方程为
dp[i][j] = max(dp[i-1][j], dp[i-1][j-w] + v) (if j >= w) dp[i-1][j] (if j < w)
可以进行空间压缩,使用一维的 dp
数组,内层需要逆向遍历。
def knapsack(weights: list[int], values: list[int], int weight_goal):
dp = [0 for _ in range(w + 1)]
for w in weights:
for j in reversed(range(w, weight_goal + 1)):
# ^^^ 逆向遍历
dp[j] = max(dp[j], dp[j-w] + values[i])
return dp[weight_goal]
完全背包
一个物品可以拿多次。状态转移方程为
dp[i][j] = max(dp[i-1][j], dp[i][j-w] + v) (if j >= w) dp[i-1][j] (if j < w)
和 0-1 背包相比,仅仅是把状态转移方程中的第二个 i-1 变成了 i。在进行空间压缩时,内层正向遍历
def knapsack(weights: list[int], values: list[int], int weight_goal):
dp = [0 for _ in range(w + 1)]
for w in weights:
for j in range(w, weight_goal + 1):
dp[j] = max(dp[j], dp[j-w] + values[i])
return dp[weight_goal]
相关题目
0-1 背包:LeetCode 474. Ones and Zeroes
def count01(s: str) -> (int, int):
# ...
return (c0, c1)
class Solution:
def findMaxForm(self, strs: List[str], m: int, n: int) -> int:
# 空间压缩版本
dp = [[0 for _ in range(n + 1)] for _ in range(m + 1)]
for s in strs:
c0, c1 = count01(s)
for n0 in reversed(range(c0, m + 1)):
for n1 in reversed(range(c1, n + 1)):
dp[n0][n1] = max(dp[n0 - c0][n1 - c1] + 1, dp[n0][n1])
return dp[m][n]
def threeD_findMaxForm(self, strs: List[str], m: int, n: int) -> int:
slen = len(strs)
dp = [[[0 for _ in range(n + 1)] for _ in range(m + 1)] for _ in range(slen + 1)]
# dp[i][n0][n1] = max(dp[i-1][n0-count0(strs[i-1])][n1-count1(strs[i-1])] + 1,
# dp[i-1][n0][n1])
for i in range(1, slen + 1):
c0, c1 = count01(strs[i - 1])
# NOTE: n0 and n1 starts at 0, not 1
for n0 in range(m + 1):
for n1 in range(n + 1):
if n0 >= c0 and n1 >= c1:
dp[i][n0][n1] = max(dp[i - 1][n0 - c0][n1 - c1] + 1, dp[i - 1][n0][n1])
else:
dp[i][n0][n1] = dp[i - 1][n0][n1]
return dp[slen][m][n]
完全背包:LeetCode 322. Coin Change
class Solution:
def coinChange(self, coins: List[int], amount: int) -> int:
dp = [float('inf') for _ in range(amount + 1)]
dp[0] = 0
for c in coins:
for am in range(c, amount + 1):
dp[am] = min(dp[am], dp[am - c] + 1)
return -1 if dp[amount] == float('inf') else dp[amount]
这里初始值设为无穷是为了方便进行 min
。